Local Quantile Regression
نویسندگان
چکیده
Conditional quantile curves provide a comprehensive picture of a response contingent on explanatory variables. Quantile regression is a technique to estimate such curves. In a flexible modeling framework, a specific form of the quantile is not a priori fixed. Indeed, the majority of applications do not per se require specific functional forms. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimate of the conditional quantile curve requires to consider a balance between local curvature and variance. In this paper, we analyze a method based on a local model selection technique that provides an adaptive estimate. Theoretical properties on mimicking the oracle choice are offered and applications to stock market and weather analysis are presented.
منابع مشابه
Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملVariable data driven bandwidth choice in nonparametric quantile regression
The choice of a smoothing parameter or bandwidth is crucial when applying nonparametric regression estimators. In nonparametric mean regression various methods for bandwidth selection exists. But in nonparametric quantile regression bandwidth choice is still an unsolved problem. In this paper a selection procedure for local varying bandwidths based on the asymptotic mean squared error (MSE) of ...
متن کاملImproved double kernel local linear quantile regression
As sample quantiles can be obtained as maximum likelihood estimates of location parameters in suitable asymmetric Laplace distributions, so kernel estimates of quantiles can be obtained as maximum likelihood estimates of location parameters in a general class of distributions with simple exponential tails. In this paper, this observation is applied to kernel quantile regression. In so doing, a ...
متن کاملGradient descent algorithms for quantile regression with smooth approximation
Gradient based optimization methods often converge quickly to a local optimum. However, the check loss function used by quantile regression model is not everywhere differentiable, which prevents the gradient based optimization methods from being applicable. As such, this paper introduces a smooth function to approximate the check loss function so that the gradient based optimization methods cou...
متن کاملPredictive Quantile Regression with Persistent Covariates: IVX-QR Approach
This paper develops econometric methods for inference and prediction in quantile regression (QR) allowing for persistent predictors. Conventional QR econometric techniques lose their validity when predictors are highly persistent. I adopt and extend a methodology called IVX ltering (Magdalinos and Phillips, 2009) that is designed to handle predictor variables with various degrees of persistenc...
متن کامل